
Lab42

Essay Challenge

On the Principles of Intelligence:

Which fundamental principles of intelligence must be

considered in the successful design of artificial intelligence?

Building human-like intelligence: an evolutionary

perspective

Simon Ouellette

31. December 2022

Lab42, Mindfire Foundation | Switzerland | www.lab42.global



Building human-like intelligence: an evolutionary perspective Simon Ouellette

1 Introduction

Human intelligence is not general, and the human mind does not start as a blank slate:

it comes with a variety of domain-specific innate mechanisms (or biases) encoded in

the genome, which manifest as rules for wiring up the brain [40, 25, 8, 32, 20]. So far,

geneticists have identified almost 1000 genes that relate to human intelligence [13, 28,

29].

As an example of such innate biases, human infants can discriminate faces soon

after birth. Primates are equipped with a cortical area known as the fusiform face area

that, in some sense, hard-wires facial image processing. The specific content of distinct

faces to recognize is of course learned, but the inductive biases that allow extraordinar-

ily fast learning of facial recognition (compared to recognition of other objects) reside

in that brain region [22, 15, 23, 18]. Intuitively, because facial recognition is so cru-

cial to survival, evolution has put much selective pressure on developing an especially

efficient mechanism for it.

Mammals, including humans, possess another specific cognitive mechanism that

is located in the hippocampus and in the entorhinal cortex. These brain regions con-

tain neurons known as “place cells” and “grid cells” respectively. The “grid cells” specif-

ically solve the distance measurement problem, while the “place cells” act more like

reference points in space. Together, they help form a cognitive map that allows the ani-

mal to move intentionally in its environment [17, 24, 14, 9]. Here as well, the scaffolding

seems mostly hard-wired, while the specific contents (different spatial environments)

are learned.

Even more abstract concepts such as cardinality and ordinality, the roots of math-

ematics, can be traced back to innate mechanisms present in other species. Indeed,

mice, rats, pigeons, lions and honeybees can count, though in a more rudimentary

sense than humans [5, 6, 21].

While the aforementioned examples can be seen as anecdotal, the “no free lunch

theorem” demonstrates mathematically that no optimization, no learning, and thus

no intelligence can be truly general and universal [38]. For every learning model there

is a data distribution on which it will underperform relative to another algorithm. In
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other words, any optimization or learning algorithm must either implicitly or explicitly

restrain its search space.

Practically speaking, there is a known tradeoff between imposing a strong hypoth-

esis structure on the data (in which case learning can be done more efficiently) and a

weak hypothesis (in which case learning will require more data). Deep learning tends

to fall in the latter camp. Meta-learning seeks to learn that hypothesis structure, as will

be discussed in section 2.

Although not a crucial point to the argument being made here, it can be noted that

there is an equivalent tradeoff in the realm of biology. While the advantages of adapt-

ability are obvious, they can come at the cost of an excessively slow lifetime skill ac-

quisition. Neuroscientist Anthony M. Zador summarizes this point in his “critique of

pure learning” [40]: “There is, thus, pressure to evolve an appropriate tradeoff between

innate and learned behavioral strategies, reminiscent of the bias-variance tradeoff in

supervised learning”.

Shortcut learning [12] is a well-known problem of deep learning that illustrates the

need for useful biases. It refers to the observed tendency in deep neural networks to

learn the “easy” solutions to the training set, which usually means the superficial ones.

Instead of learning deep, meaningful representations in the way humans do, deep neu-

ral networks will latch onto any superficial correlations it can find. This is especially

obvious in the field of computer vision.

As an example, convolutional neural networks (CNNs) trained to identify a cow will

overfit the backgrounds that occur in the training set. It will be unable to recognize the

same cow in unfamiliar environments. It probably relies on patterns of color and fre-

quency in the image as a whole, rather than learning the actual shape of the intended

object [12]. Similarly, experiments have shown that CNNs prefer to learn texture over

global shape, as it identifies a golf-ball textured teapot as a golf ball, rather than a teapot

[1]. In the absence of meaningful inductive biases, it is easier to just latch onto texture

than to learn a more meaningful representation based on a combination of factors,

such as shape, color and texture. After all, the CNN only sees matrices of pixels.

In contrast, it is practically impossible for humans to look at the world as a matrix

of pixels: the unconscious mind will automatically group things into objects before
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they can even be consciously processed. Depth perception is instinctive: if a human

sees part of an object protruding from behind a wall, immediately they will know that

the rest of that object (probably) exists behind that wall. Object representation notions

such as spatio-temporal cohesion (objects as connected, bounded wholes) and object

permanence (fully or partially obstructed objects did not suddenly disappear) are core

inductive biases for humans [32], but not for the CNN.

It could be argued that part of what is generally known as “common sense” is a

collection of such pre-existing inductive biases and priors (both innate and acquired)

that restrict the search space of solutions to “sensible” ones. Another aspect of com-

mon sense is the integrated use of a vast breadth of knowledge about the world that

humans have access to, but that our typically narrow AI models simply do not.

There is a cognitive science theory that calls these built-in inductive biases, these

fundamental building blocks of learning, Core Knowledge [32]. It has been proposed

[40, 16] that identifying and implementing these Core Knowledge concepts is central

to building human-like intelligence. The question is: how do we achieve this?

2 The Case for Meta-Learning

It would be unreasonable to expect to manually discover and implement every sin-

gle one of these Core Knowledge principles. This is for the same reason that it would

be unreasonable to try to manually craft a set of rules or hard-coded algorithms that

can categorize animal species from images as well as a deep neural network. Indeed,

manually identifying and implementing the result of a billion years of evolutionary ex-

perience about the world seems too ambitious. In the spirit of machine learning, these

things should be meta-learned.

In a sense, life can be seen as a meta-learning algorithm. Evolution is the outer opti-

mization loop. It selects those hard-wired inductive biases that make learning optimal

for individuals [4]. The inner optimization loop, then, corresponds to the learning that

occurs within a lifetime. These processes will be referred to as inter-life learning and

intra-life learning respectively.

It should be noted that even intra-life learning can be said to contain an element
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of meta-learning, in the form of knowledge reuse from past experience. However, this

is not the type of meta-learning that will be referred to in this essay, as it is assumed

that such intra-life meta-learning is a process that would emerge automatically from

optimal inter-life learning. That is, because intra-life knowledge reuse is a useful skill,

a well-functioning inter-life learning process would mold the intra-life model in such

a way that it will be able to develop it. As a consequence of that, it can be seen as a

notion that is secondary to what is being discussed in this essay.

There is a further sense in which evolution and meta-learning can be seen as analo-

gous, which relates to sample efficiency. In meta-learning, the inner model is efficient

at learning new tasks from very few samples, but a very large number of samples are

still required to learn the meta-model. Similarly, in the realm of biology, humans are

efficient at learning intra-life tasks because evolution, an extremely sample inefficient

process, optimized our brains for this meta-task distribution which is human life.

This inter-life learning process includes what we typically call meta-learning in ma-

chine learning. We know for example that Model-Agnostic Meta-Learning (MAML) op-

erates not so much by learning to adapt quickly, but by learning initial shared features

that can be reused across different tasks of the meta-task distribution [26]. In other

words, it learns Core Knowledge for that meta-task distribution. But MAML is a very

strict, limited form of meta-learning compared to what is really needed: it only learns

initial weights.

Some neural architectures are poorly suited to some types of problems, regardless

of the values of the weights, which is why Neural Architecture Search [11] needs to play

a role as well. For example, the presence (or absence) of external memory modules,

attention mechanisms, and components such as recurrence and convolutions should

all be part of that inter-life learning process’ search space.

Even so, meta-learning initial weights and neural architecture are not sufficient.

There are questions to be answered even with regards to principles as fundamental

as the optimization algorithm itself. This is an open question, which will be explored

further in the last section.

To summarize this section, these Core Knowledge principles that allow sample effi-

cient, yet flexible, intra-life learning of tasks from the “human meta-task distribution”
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should be meta-learned. This inter-life learning process implies more than just learn-

ing neural network weights, which is why more direct, conventional approaches would

fail (unless all of the required indicative biases were known). Meta-learning implies,

however, a meta-task distribution to learn from. Since we are trying to meta-learn the

inductive biases that allow humans to gain an efficient grasp of the world that sur-

rounds them, it is almost as if a simulation of life itself needs to be created. Is this even

feasible?

3 Meta-learning the world?

Learning human-like intelligence in the real world, instead of a simulation, would al-

most necessarily take the same time it took for evolution to build it (perhaps slightly

less time due to more efficient optimization algorithms). One cannot avoid the ne-

cessity of learning it in a simulation or, at least, of meta-learning Core Knowledge in a

simulation, such that the intra-life learning in the physical world is relatively efficient.

This is another reason why a kind of meta-learning is more appropriate than just di-

rectly learning to solve the simulations: some sort of efficient generalization to new

environments is needed.

Obviously, one cannot build a perfect simulation of life. Instead, the solution might

start with a successful series of educated guesses about what those Core Knowledge

principles should be. Cognitive science already provides us with a lot of plausible start-

ing points. A few examples would be: object permanence, cardinality, inductive biases

for grounded language learning, inductive biases for coordination with other agents,

logical reasoning, etc. [32, 31, 30, 34]

As a next step, one should implement sufficiently domain-randomized [33] batter-

ies of tasks that test for each of these Core Knowledge elements. The key is to build

those simulations in a such a way that they will generalize well to similar real-life tasks,

without requiring them to be imitations of real life. This is why the field of research

sometimes referred to as Sim-to-real transfer [27, 41] is crucial.

Taking the example of object permanence as a Core Knowledge concept, a vari-

ety of tasks that require this fundamental notion can be built. One could show mov-
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ing objects, sometimes in ways that are visibly obstructed, and have the model count

how many distinct objects exist in the video sequence. Temporarily obstructed objects

should not be double-counted, otherwise object permanence has not been learned.

The domain randomization can take many forms: a battery of such tasks could have

realistic textures and objects, another could be based on abstract shapes with sim-

plistic textures. Various different backgrounds are possible. An alternance of three-

dimensional and two-dimensional representations could be used.

These task simulations should not necessarily be thought of as separate, indepen-

dent universes. Ideally, they would all be integrated into a common environment in

which evolve a multitude of reinforcement learning-based agents. In fact, using ex-

actly such an approach, researchers [37] were able to teach a general notion of object

permanence to a virtual agent. In this case, the simulation was a kind of hide-and-seek

game using objects, called cache. In order to solve this task, reinforcement learning

agents needed to implicitly learn concepts such as object permanence, occlusion and

depth.

Because a reinforcement learning context seems almost necessary to build an in-

telligent agent, it should be noted that a well constructed inter-life learning process

should also be able to develop and optimize intermediate rewards. One of the very

first skills that a successful agent should develop is the ability to actively learn from

its environment through careful experimentation. This almost necessarily implies the

development of intermediate rewards such as curiosity.

To summarize, it should be possible to create simulations for which the goals can

only be attained by learning the necessary Core Knowledge skills that have been iden-

tified as desirable for human-like intelligence. It is, in general, much easier to define a

problem than to find its solution. That is the underlying assumption behind the pro-

posed approach. By letting reinforcement learning agents play in such a simulation,

researchers have shown that it was able to learn certain object representation princi-

ples such as permanence. The suggestion here is: why not extend this principle to all

other Core Knowledge skills?
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4 The Heterogeneous Mind

The paradigm presented in the previous sections is a central element of building human-

like intelligence, but it does not cover all of it. The current mainstream paradigm of

backpropagation should be questioned, since backpropagation is limited to learning

differentiable functions (while, at the same time, being biologically implausible). A

great example of this is the Abstraction & Reasoning Corpus [7]. It consists of a battery

of very diverse visual reasoning problems based on grids. These tasks are fairly easy for

humans to solve. End-to-end differentiable, gradient descent-driven algorithms such

as backpropagation have a poor track record so far on this dataset. Instead, the state of

the art is set by discrete search algorithms [39].

It has been suggested by many that neurally-guided discrete search (NGS) solu-

tions, in particular those that belong to the field of inductive program synthesis, could

be the most promising approach to solving the Abstraction & Reasoning Corpus. Ex-

amples of such algorithms include DreamCoder [10] and DeepSynth [19]. These ap-

proaches work by using a neural network to propose probabilities on a context-free

grammar after having observed a number of input/output examples for a task.

This probabilistic context-free grammar is essentially a library of function primi-

tives and a set of construction rules to which probabilities are assigned. As such, it

defines a search space over the possible solutions for the input problem. A combina-

torial search algorithm is then used to search this space and return the most probable

program solution. Because the neural network can learn to suggest different search

probabilities for different tasks over a problem domain (i.e. meta-task distribution), it

can be considered a meta-learning approach.

Neurally-guided search has an interesting analogy in cognitive science: procedu-

ral versus descriptive knowledge [10]. In the same way that humans can be said to

combine intuitive (fast, procedural) thinking and symbolic (slow, descriptive) reason-

ing, these algorithms combine a neural network that learns this procedural know-how

with a symbolic search that learns the descriptive knowledge.

It is noteworthy that discrete search solutions struggle with continuous parame-

ters: they need to integrate a continuous component such as gradient descent for that
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purpose [10, 3]. Furthermore, discrete search solutions are inappropriate in fields such

a computer vision, where end-to-end differentiable neural networks currently domi-

nate. We can gather from this that at least two fundamentally different types of opti-

mization would be helpful: a continuous one and a discrete (symbolic) one.

Yet, it is implausible that the human brain implements two distinct mechanisms

for learning. Furthermore, because synaptic weights are adjusted gradually, the brain’s

learning process is much closer to gradient descent and similar continuous optimiza-

tion methods than to a discrete search, at least at the fundamental level. A neuro-

science study [2] offers some insight into this dilemma: researchers have analyzed be-

havioral and neuroimaging data in stroke patients. Using Raven’s Colored Progressive

Matrices to evaluate a patient’s reasoning ability (in what is generally considered a non-

verbal task), they found that language-impaired patients underperformed relative to a

control group. With further neuroimaging-based analysis, they concluded that deficits

on the relational reasoning problems were associated with lesions in the brain regions

that are necessary for language processing. This suggests that language is necessary

for higher-level reasoning and problem-solving.

Another empirical result that supports this idea is the relatively recent realization,

in the field of natural language processing, that reasoning appears as an emergent

property in sufficiently large language models [35, 36].

In other words, much like in neurally-guided search methodologies, the symbolic

grammar (or language) is not just a means of communication but also a fundamen-

tal building block of reasoning. The proposed hypothesis is that combinatorial search

ability is an emergent faculty made possible through the evolution of language. The

learning process, at the foundation of it all, is still continuous and gradual rather than

discrete and combinatorial. Perhaps somewhere between NGS methods and large lan-

guage models lies the solution to a system that can truly reason, yet can meta-learn its

function primitives from experience.

In conclusion, human-like intelligence is not to be understood as a monolithic, uni-

versal, blank-slate algorithm. Instead, it is a heterogeneous, organic collection of sub-

modules and inductive biases that were carefully molded by evolution. These learning

biases allowed humans to be efficient at learning the relevant tasks of their existence
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on earth, while staying sufficiently adaptable and flexible. An approach that is analo-

gous to evolution could be used to meta-learn similar biases, through the careful use

of task simulations guided by cognitive science principles.

Currently, deep learning approaches tend to underperform on reasoning tasks, where

discrete algorithms still mostly dominate. However, large language models have re-

cently demonstrated an emergent ability to reason through the use of language. It is

hypothesized that once an otherwise continuous learning process has evolved the no-

tion of language, combinatorial search at that higher level of symbols is made possible.

This, in turn, potentially solves the “continuous vs discrete” dilemma.

Combining the insights presented here, a final hypothesis is suggested: if one were

to ground (in the technical sense of “grounded language learning”) these large lan-

guage models into a simulation based on a sufficiently general meta-task distribution

of Core Knowledge problems, what extraordinary capabilities might emerge in these

virtual agents?
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